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Total angular momentum conservation is a fundamental law in classical and quantum mechanics, but since
spin momentum is not a classical quantity, it is far from obvious how the law affects spin momentum change
in laser-induced femtosecond magnetization. Here it is shown that if a system has full rotational symmetry, the
law requires that the spin and orbital momenta are coupled, but there is no genuine magnetization change for
linearly polarized light. To induce such a change, this very symmetry has to be broken. In solids, the rotational
symmetry is lifted by the translational symmetry, and the spin and orbital momenta components of different
total angular momenta mix to some extent. This mixing is the origin of the time-dependent total angular
momentum as observed by Bartelt et al. �Appl. Phys. Lett. 90, 162503 �2007��. The remaining unmixed
portion accounts for an extra spin change in three independent circularly polarized laser experiments.
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It is a fundamental law in classical and quantum mechan-
ics that the total angular momentum of a system must be
conserved in absence of external torques. In the laser-
induced femtosecond magnetization process,1 the system
involves a lattice, electron spins, electron orbitals, and

photons. The total angular momentum change �J� is2

�J� =�L�photon+�L� lattice+�L� e+�S�e=0, where L�photon, L� lattice,

L� e, and S�e are the photon, lattice, electron orbital, and spin
momenta, respectively. The spin change can be computed as

�S�e=−�L�photon−�L� lattice−�L� e. On the ultrafast time scale

when the lattice is silent or �L� lattice=0, �S�e=−�L�photon

−�L� e. In solids, due to translational symmetry, L� e is partially
quenched, but the amount of quenching is unknown classi-
cally. On the other hand, if the orbital angular momentum

were completely quenched, �S�z=−�L�photon would provide a
simple explanation of how spin is changed in the laser-
induced femtosecond magnetism, which has attracted enor-
mous interest.1,3–7 However doing so would imply not
enough photons available to demagnetize a sample.4 This
equation also suggests two incorrect results: without spin-
orbit coupling �SOC�, �i� the magnetization can be changed,
and �ii� light is coupled to spin, both of which contradict the
quantum mechanical results.8

To circumvent the above problem, recently Stamm et al.9

suggested an efficient exchange channel between the spin
and lattice systems on a time scale of 150 fs, while still
maintaining the total momentum conservation. However this
leads to another complication: one must assume an unprec-
edented large spin-lattice interaction.7,10 To this end, there
has been no consensus on the role of the angular momentum
conservation law in femtosecond magnetism.4,11 All the ex-
isting theoretical investigations,8,12,13 including our previous
investigations,14 have not addressed the law explicitly. This
greatly hampers current efforts in femtosecond magnetism.

In this paper, we aim to clarify the role of total angular

momentum through an analytical investigation. This ex-
cludes any potential ambiguity that may occur in a numerical
calculation. We first show that if the total angular momentum
is a good quantum number, there is no genuine demagneti-
zation for linearly polarized light. It is necessary to break the
rotational symmetry to induce genuine demagnetization,
where the spin and orbital momenta of different total angular
momenta are mixed to some extent. In solids it is this mixing
that accounts for the total angular momentum change in a
recent experiment.15 The remaining unmixed portion, though
small, upholds the coupling between spin and orbital mo-
menta. This allows the circularly polarized light to introduce
an extra change in spin momentum, though the average of
signals induced by left and right circularly polarized lights
is exactly the same as that of linearly polarized light.
Both findings are consistent with three independent
experiments.2,16,17

To begin with, we should first point out that the spin de-
gree of freedom is a pure quantum mechanical quantity.
While it is possible to represent spin by a classical vector in
a thermal or magnetic field driven process, in an optically
excited process one must adopt a quantum-mechanical pic-
ture of spin. The fundamental reason for this difference is
because the selection rule plays a dominant role in optical
excitation, not in a thermal or magnetic excitation.

If a system has spherical symmetry, the total angular mo-
mentum is conserved. Without SOC, the dipole selection rule
is �l= �1,�ml=0, �1 and �s=0, where l, ml, and s are
orbital, magnetic orbital, and spin quantum numbers, respec-
tively. The light only couples to the orbital part of the angu-
lar momentum, leaving the spin momentum unchanged,
which is also true in solids.

With SOC, states have mixed spin-up and spin-down
states, and the selection rule becomes �j=0, �1 and
�mj =0, �1, excluding the transition of j=0↔ j=0. Two

eigenfunctions of J� are
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where different quantum numbers l , j ,mj are used for �a and
�b to highlight that those numbers may differ. Here Ylm is the
spherical harmonic function. The expectation values of sz are
��a	sz	�a
= �mj / j�� /2 and ��b	sz	�b
= �−mj� / j�+1�� /2.18,19

There is no need to compute �lz
 separately since �lz
=mj�
− �sz
. How the spin momentum changes during the transi-
tions between the eigenfunctions �a and �b holds the key to
femtosecond magnetism.

First, the spin momentum change depends on the type of
transitions. Table I shows all the possible changes in the spin
momentum. To get a rough estimate for each transition, we
consider transitions of mj�−mj =�mj =0. For the �a→�a�

and �b→�b� transitions, the percentage change ��sz
 / �sz

ranges from −1 / �j+1� to 1 / �j−1� and from −1 / �j+1� to
1 / �j+2�, respectively, and for �a→�b it is just
−�2j+1� / �j+1�. These results suggest that it is possible to
induce a huge spin change in ferromagnets, and even the sign
can be changed. Such a big change has been observed in
CoPt3,20 where a nearly complete demagnetization was dem-
onstrated.

Second, the light polarization is not a necessary condition
for spin momentum change. Both linearly and circularly po-
larized light can change the spin momentum. The middle row
of Table I �mj�−mj =0� shows that linearly polarized light
can change the spin momentum since the spin and orbital
momenta can exchange. For circularly polarized light with
�mj = �1, all of the spin momentum change contains two
contributions �see Table I�: the first term is from the light
polarization, and the second is from the internal exchange
between orbital and spin momenta. Compared to linearly po-
larized light, right/left circularly polarized light contributes
an extra “1 / j” term. This is a manifestation of the angular

momentum conservation. If the orbital momentum is par-
tially quenched and the total angular momentum is no longer
a good quantum number, the circularly polarized light, via
the remaining coupling between spin and orbital momenta,
still induces an extra contribution to the spin momentum.
This is the origin of the extra peak around the zero time
delay as observed by three independent experimental
groups,2,16,17 and the polarization effect becomes even more
pronounced in semiconductors.21 The table also shows that
the average of the spin momentum changes induced by
right/left circularly polarized light is exactly the same as
that by the linearly polarized light, which is verified
experimentally.16,17 This finding is very different from the
simple classical consideration above.

Third, it is necessary to break the spherical symmetry for
linearly polarized light to induce a true magnetization
change. If j and mj are both good quantum numbers and mj
takes the values −j, −j+1, . . ., and j, a sum of the spin mo-
mentum change over mj is zero �see Table I, where all the
terms for �mj =0 contain mj�. Compared to circularly polar-
ized light, linearly polarized light is more sensitive to the
magnetic ordering. This finding is not surprising. In all of
magneto-optics, it is well known that the breakdown of
spherical symmetry is a necessary condition. This result is
valid for both ferromagnets and magnetic semiconductors. In
solids, the breakdown of the symmetry is guaranteed thanks
to the translational symmetry, where the spin and orbital mo-
menta, belonging to different total angular momenta, mix to
some extent, and the amount of mixing depends on the spe-
cific system. As will be seen below, if the spherical symme-
try is broken, the coupling between spin and orbital momenta
is only maintained at the basis-set level, not at the eigenstate
level, which is a major cause of the current confusion in the
literature. This argument becomes even clearer if we exam-
ine the impact of translational symmetry on the total angular
momentum.

We start with a Bloch state in a regular crystal with trans-
lational symmetry and expand it in the basis set of eigen-
functions � j,mj;k

of J for each k point,

	�nk
 =
eik·r

��
�
j,mj

cj,mj;nk� j,mj;k
, �3�

where � is the unit cell volume, and k and r are the electron
wave vector and position, respectively. If a material has a

TABLE I. Spin momentum change ��sz
 �in units of � /2� for three possible transitions. The contribution
from the radial wave function is not included.

Transition �a→�a� �b→�b� �a→�b

j�− j −1 1 −1 1 0
mj�−mj

1 + 1
j−1 +

mj

j�j−1� + 1
j+1 −

mj

j�j+1� − 1
j −

mj

j�j+1� − 1
j+2 +

mj

�j+1��j+2� − 1
j+1 −

�2j+1�mj

j�j+1�

0 mj

j�j−1� −
mj

j�j+1� −
mj

j�j+1�
mj

�j+1��j+2� −
�2j+1�mj

j�j+1�

−1 − 1
j−1 +

mj

j�j−1� − 1
j+1 −

mj

j�j+1� + 1
j −

mj

j�j+1� + 1
j+2 +

mj

�j+1��j+2� + 1
j+1 −

�2j+1�mj

j�j+1�
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spherical symmetry, Eq. �3� has only one term in the sum-
mation. Because of translational symmetry, it contains many
more terms. How spin and orbital momenta are mixed is
determined by cj,mj;nk. Note that � j,mj;k

carries a k index since
at each k point the eigenfunctions may differ.

Equation �3� is very insightful. �i� There is no limit on
how large the orbital momentum change can be. First, the
summation contains all the possible j and mj, with its con-
tribution weighted by the coefficients cj,mj;nk. Second, if we
expand the plane wave factor as

eik·r = 4��
l=0

	

�
m=−l

+l

iljl�kr�Ylm�r̂�Ylm
� �k̂� , �4�

where jl is the spherical Bessel function, and r̂ and k̂ are the
unit vectors of r and k, we see that l and m can take any
possible value as well. The availability of the orbital momen-
tum is not a limiting factor for spin momentum change. If the
laser intensity is strong, multiple excitations certainly
increase/decrease the orbital momentum to a very high/low
value.

�ii� The total angular momentum becomes time depen-
dent. Since it does not permute with the crystal Hamiltonian,
the expectation value of J is a superposition of J values
among different states and becomes time dependent. To be
more specific, we assume that the system is described by
	
�t�
=�nk�nk�t�e−iEnkt/�	�nk
, where �nk�t� is the population
coefficient and Enk is the band energy. The expectation value
of J is

�
�t�	J	
�t�


= �
n1,k1;n2,k2

�n1k1

� �t��n2k2
�t�ei�En1k1

−En2k2
�t/���n1k1

	J	�n2k2

 ,

�5�

with its time dependence from the state population change
�first two terms behind the summation� and the energy phase
factor �third term�. �
�t�	J	
�t�
 will be time dependent as
long as ��n1k1

	J	�n2k2

 is not diagonal or J is not a good

quantum number. This prediction is fully consistent with the
experimental finding where the Jz value obtained by Bartelt
et al.15 indeed changes with time. A quantitative estimate on
the time scale of angular momentum change from Eq. �5� is
difficult since it requires a detailed band structure calcula-
tion, but determining factors can be easily seen. The expo-

nent factor represents the state phase change. If both �n1k1

� �t�
and �n2k2

�t� were time independent, the dephasing among dif-
ferent states would determine the time scale of angular mo-
mentum change, where the shorter time scale dynamics
would be determined by those pairs of states which have a
larger energy difference, and the longer dynamics by states
with a smaller energy difference. Since normally �n1k1

� �t� and
�n2k2

�t� are driven by the ultrafast laser pulse and change
with time, the time scale will be jointly determined by the
extrinsic laser pulse and intrinsic state dephasing.

In conclusion, we have investigated the influence of total
angular momentum on the laser-induced femtosecond mag-
netization change. We show analytically if the total angular
momentum is a good quantum number, the magnetization
change is not possible for linearly polarized light. The lifting
of the full rotational symmetry is a necessary condition for
the magnetization change. As a result, the spin and orbital
momenta of different total angular momenta mix and the
total momentum changes with time. This is the origin of the
experimental results by Bartelt et al.15 The unmixed portion
leads to an extra magnetization change by circularly polar-
ized light. Our results show that an average of spin momen-
tum change over left and right circularly polarized lights is
exactly the same as the linearly polarized one. This explains
the findings in three independent experiments by Longa et
al.,2 Comin et al.,16 and Wilks et al.17
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